263 lines
10 KiB
Python
263 lines
10 KiB
Python
# -*- coding: utf-8 -*-
|
|
import os
|
|
import json
|
|
import datetime
|
|
import logging
|
|
import subprocess
|
|
import sys
|
|
|
|
import pandas as pd
|
|
from dateutil.relativedelta import relativedelta
|
|
import easygui
|
|
|
|
|
|
|
|
L = logging.getLogger(__name__)
|
|
|
|
|
|
def get_dropbox_dir():
|
|
"""
|
|
Windows and Mac get dropox dir for Business or fallback to personal
|
|
"""
|
|
if os.name == "nt":
|
|
dropbox_file = os.path.join(os.getenv('APPDATA'), 'Dropbox', 'info.json')
|
|
else:
|
|
dropbox_file = os.path.expanduser("~/.dropbox/info.json")
|
|
with open(dropbox_file) as dbf:
|
|
dbconfig = json.loads(dbf.read())
|
|
|
|
if "business" in dbconfig:
|
|
dropbox_dir = dbconfig['business']['path'] + "/*.xls"
|
|
elif "personal" in dbconfig:
|
|
dropbox_dir = dbconfig['personal']['path'] + "/*.xls"
|
|
else:
|
|
dropbox_dir = os.path.expanduser("~")
|
|
|
|
return dropbox_dir
|
|
|
|
|
|
class AttributionReport(object):
|
|
def __init__(self, months=6, footer_length=None):
|
|
self.months = months
|
|
self.footer_length = footer_length
|
|
|
|
self.SF_DATE_COLUMN = "Date"
|
|
self.DP_DATE_COLUMN = "Date Received"
|
|
self.PI_COLUMN = "PI_Name"
|
|
self.ORG_COLUMN = "Org Name"
|
|
# Output the XLSX in this order
|
|
|
|
self.OUTPUT_COLUMN_ORDER = ["Addgene Assigned", "Plasmid ID", "Deposit ID", "Institute", "PI Name",
|
|
"Date Received", "Original Date", "Original ORG", "Original PI"]
|
|
|
|
self.ACCEPTABLE_EXTENSIONS = ["*.csv", "*.xls", "*.xlsx"]
|
|
|
|
# columns that need to be in the files
|
|
self.REQUIRED_SF_COLUMNS = ["First Name", "Last Name", "Account Name", "Date", "Assigned"]
|
|
self.REQUIRED_DP_COLUMNS = ["Org Name", "Deposit ID", "Plasmid ID", "PI_Name", "Date Received"]
|
|
|
|
# After load and merging, delete these columns
|
|
self.SF_TRIM_COLUMNS = ["Subject", "Created Date", "LIMS Organization ID",
|
|
"Account Description"]
|
|
self.DP_TRIM_COLUMNS = ["Org ID", "Deposit Status", "PI_ID", "Date Available", "# Orders",
|
|
"# Plasmids in the Deposit", "Addgene Contact", "Country"]
|
|
|
|
self.DEFAULT_DIR = get_dropbox_dir()
|
|
|
|
def _get_dataframe_by_extension(self, path, date_cols):
|
|
"""
|
|
Gets a dataframe either by .csv, or .xls(x),
|
|
or erroring and exiting.
|
|
"""
|
|
_, ext = os.path.splitext(path)
|
|
|
|
if ext == ".csv":
|
|
df = pd.read_csv(path, parse_dates=date_cols, encoding='utf-8')
|
|
elif ext in [".xlsx", ".xls"]:
|
|
df = pd.read_excel(path, parse_dates=date_cols, encoding='utf-8')
|
|
else:
|
|
easygui.msgbox("File was not of type {0}.\nQuitting".format(
|
|
" ".join(self.ACCEPTABLE_EXTENSIONS)),
|
|
"ERROR")
|
|
sys.exit(1)
|
|
return df
|
|
|
|
def get_dataframes(self):
|
|
salesforce_data_name = easygui.fileopenbox("Salesforce Export",
|
|
default=self.DEFAULT_DIR,
|
|
filetypes=self.ACCEPTABLE_EXTENSIONS)
|
|
if salesforce_data_name == ".":
|
|
easygui.msgbox("You did not select a Salesforce Export, stopping program.",
|
|
"Good Bye")
|
|
sys.exit(1)
|
|
salesforce_df = self._get_dataframe_by_extension(salesforce_data_name, date_cols=[4, 5])
|
|
if set(self.REQUIRED_SF_COLUMNS) < set(salesforce_df.columns):
|
|
L.info("Proper columns")
|
|
else:
|
|
L.info("Wrong columns")
|
|
easygui.msgbox("At a minimum, the Salesforce file must have the following columns:\n\n"
|
|
"{0}\n\n"
|
|
"Please re-run and select a proper file.".format(", ".join(self.REQUIRED_SF_COLUMNS)),
|
|
"Incorrect columns")
|
|
sys.exit(1)
|
|
|
|
deposit_data_name = easygui.fileopenbox("Deposit Data",
|
|
default=self.DEFAULT_DIR,
|
|
filetypes=self.ACCEPTABLE_EXTENSIONS)
|
|
if deposit_data_name == ".":
|
|
easygui.msgbox("You did not select a Deposit Data Export, stopping program.",
|
|
"Good Bye")
|
|
sys.exit(1)
|
|
deposit_df = self._get_dataframe_by_extension(deposit_data_name, date_cols=[7, 8])
|
|
if set(self.REQUIRED_DP_COLUMNS) < set(deposit_df.columns):
|
|
L.info("Proper columns")
|
|
else:
|
|
L.info("Wrong columns")
|
|
easygui.msgbox("At a minimum, the Deposit Data file must have the following columns:\n\n"
|
|
"{0}\n\n"
|
|
"Please re-run and select a proper file.".format(", ".join(self.REQUIRED_DP_COLUMNS)),
|
|
"Incorrect columns")
|
|
sys.exit(1)
|
|
|
|
salesforce_df, deposit_df = self.clean_dataframes(salesforce_df, deposit_df)
|
|
return salesforce_df, deposit_df
|
|
|
|
def clean_dataframes(self, salesforce_df, deposit_df):
|
|
# Get rid of the footer that Salesforce adds.
|
|
if self.footer_length:
|
|
length_with_footer = len(salesforce_df.index)
|
|
salesforce_df = salesforce_df.head(length_with_footer - self.footer_length)
|
|
|
|
# Clean up Salesforce
|
|
salesforce_df.sort(self.SF_DATE_COLUMN, ascending=1)
|
|
|
|
# Cleanup Deposit Data
|
|
deposit_df['Org Name'].fillna('', inplace=True)
|
|
deposit_df.sort(self.DP_DATE_COLUMN, ascending=1)
|
|
deposit_df['PI_Name'].astype(unicode)
|
|
|
|
# Cleanup not needed columns
|
|
for col in self.SF_TRIM_COLUMNS:
|
|
del salesforce_df[col]
|
|
for col in self.DP_TRIM_COLUMNS:
|
|
del deposit_df[col]
|
|
|
|
return salesforce_df, deposit_df
|
|
|
|
def get_filtered(self, filtered_df, sf_row, pi_name, pi_org, org=False):
|
|
"""
|
|
Assume kind is PI by default.
|
|
Filter where either the PI and PI match, or the Org and Org match
|
|
If both match, add it to the the double list
|
|
if only one matches, add it to the single list.
|
|
"""
|
|
filter_column = self.PI_COLUMN
|
|
filter_value = pi_name
|
|
single, double = [], []
|
|
|
|
if org:
|
|
filter_column = self.ORG_COLUMN
|
|
filter_value = pi_org
|
|
|
|
name_match = filtered_df[filtered_df[filter_column] == filter_value]
|
|
|
|
if not name_match.empty:
|
|
for _, row in name_match.iterrows():
|
|
data = {
|
|
"Addgene Assigned": sf_row['Assigned'],
|
|
"Plasmid ID": row['Plasmid ID'],
|
|
"Deposit ID": row['Deposit ID'],
|
|
"Institute": row['Org Name'],
|
|
"PI Name": row['PI_Name'],
|
|
"Date Received": row[self.DP_DATE_COLUMN],
|
|
"Original Date": sf_row[self.SF_DATE_COLUMN],
|
|
"Original ORG": pi_org,
|
|
"Original PI": pi_name,
|
|
}
|
|
if (data['Institute'] == data['Original ORG']) and \
|
|
(data['PI Name'] == data['Original PI']):
|
|
double.append(data)
|
|
else:
|
|
single.append(data)
|
|
return single, double
|
|
|
|
def get_attribution_dataframes(self):
|
|
salesforce_df, deposit_df = self.get_dataframes()
|
|
|
|
name_matches = []
|
|
org_matches = []
|
|
double_matches = []
|
|
mismatches = []
|
|
|
|
# Iterate through the Salesforce report as the master document
|
|
for index, sf_row in salesforce_df.iterrows():
|
|
# Get a start date and an end date for filtering.
|
|
start_date = sf_row[self.SF_DATE_COLUMN]
|
|
end_date = start_date + relativedelta(months=self.months)
|
|
|
|
start = deposit_df[self.DP_DATE_COLUMN].searchsorted(start_date)[0]
|
|
end = deposit_df[self.DP_DATE_COLUMN].searchsorted(end_date)[0]
|
|
|
|
# Filter the deposit data to grab only things within that timeframe.
|
|
filtered_df = deposit_df.ix[start:end]
|
|
|
|
# Variables for short names, and not having to type index a lot.
|
|
pi_name = unicode(sf_row['First Name'] + " " + sf_row['Last Name'])
|
|
pi_org = sf_row['Account Name']
|
|
|
|
# Get matches by the PI's name
|
|
by_name, pi_by_both = self.get_filtered(filtered_df, sf_row, pi_name, pi_org)
|
|
name_matches.extend(by_name)
|
|
mismatches.extend(by_name)
|
|
double_matches.extend(pi_by_both)
|
|
|
|
# Get matches by the organization name
|
|
by_org, org_by_both = self.get_filtered(filtered_df, sf_row, pi_name, pi_org, org=True)
|
|
org_matches.extend(by_org)
|
|
mismatches.extend(by_org)
|
|
double_matches.extend(org_by_both)
|
|
|
|
return (
|
|
("PI", pd.DataFrame(name_matches, columns=self.OUTPUT_COLUMN_ORDER)),
|
|
# ("Institute", pd.DataFrame(org_matches, columns=self.OUTPUT_COLUMN_ORDER)),
|
|
("Double", pd.DataFrame(double_matches, columns=self.OUTPUT_COLUMN_ORDER)),
|
|
# ("Single", pd.DataFrame(mismatches, columns=self.OUTPUT_COLUMN_ORDER))
|
|
)
|
|
|
|
def run(self):
|
|
frames = self.get_attribution_dataframes()
|
|
|
|
self.dirname = easygui.diropenbox("Where to save reports?", "Select Report Output Directory", self.DEFAULT_DIR)
|
|
if not self.dirname:
|
|
self.dirname = self.DEFAULT_DIR
|
|
|
|
for key, df in frames:
|
|
fname = '{0}_Attribution_Report_{1}_Match.xlsx'.format(datetime.date.today(), key)
|
|
|
|
xls_path = os.path.join(self.dirname, fname)
|
|
|
|
deduped_df = df.drop_duplicates()
|
|
|
|
with pd.ExcelWriter(xls_path, engine='xlsxwriter') as writer:
|
|
deduped_df.to_excel(writer, sheet_name='Sheet1', index=False)
|
|
|
|
|
|
if os.name == "nt":
|
|
subprocess.call("explorer {0}".format(self.dirname),shell=True)
|
|
else:
|
|
# Open the last path
|
|
subprocess.call(["open", "-R", xls_path])
|
|
|
|
|
|
def main():
|
|
try:
|
|
report = AttributionReport(months=6, footer_length=6)
|
|
report.run()
|
|
easygui.msgbox("Done, your file are saved where you chose.", "Done!")
|
|
except:
|
|
easygui.exceptionbox()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|