162 lines
3.9 KiB
Python
162 lines
3.9 KiB
Python
from contextlib import contextmanager
|
|
from timeit import default_timer
|
|
from pathlib import Path
|
|
import cProfile
|
|
import functools
|
|
import pstats
|
|
|
|
|
|
def profile(func):
|
|
@functools.wraps(func)
|
|
def inner(*args, **kwargs):
|
|
profiler = cProfile.Profile()
|
|
profiler.enable()
|
|
try:
|
|
retval = func(*args, **kwargs)
|
|
finally:
|
|
profiler.disable()
|
|
with open("profile.out", "w") as profile_file:
|
|
stats = pstats.Stats(profiler, stream=profile_file)
|
|
stats.print_stats()
|
|
return retval
|
|
|
|
return inner
|
|
|
|
|
|
spl = lambda y: [int(w) for w in y]
|
|
|
|
|
|
def minmax(l):
|
|
return min(l), max(l)
|
|
|
|
|
|
def load_rows(day):
|
|
return [row for row in load(day)]
|
|
|
|
|
|
def load(day):
|
|
path = Path(get_fname(day))
|
|
return path.read_text().rstrip().split("\n")
|
|
|
|
|
|
def get_fname(day: int) -> str:
|
|
import sys
|
|
|
|
if sys.argv[-1] == "--sample":
|
|
return f"../samples/day{day:02}.txt"
|
|
else:
|
|
return f"../full/day{day:02}.txt"
|
|
|
|
|
|
#############
|
|
def load_char_matrix(f):
|
|
my_file = []
|
|
for line in f:
|
|
my_file.append(line.rstrip())
|
|
return [list(x) for x in my_file]
|
|
|
|
|
|
def load_file_char_matrix(name):
|
|
with open(name, "r") as f:
|
|
return load_char_matrix(f)
|
|
|
|
|
|
def load_int_matrix(f):
|
|
my_file = []
|
|
for line in f:
|
|
my_file.append(line.rstrip())
|
|
return [list(map(int, x)) for x in my_file]
|
|
|
|
|
|
def load_file_int_matrix(name):
|
|
with open(name, "r") as f:
|
|
return load_int_matrix(f)
|
|
|
|
|
|
def load_word_matrix(f):
|
|
my_file = []
|
|
for line in f:
|
|
my_file.append(line.rstrip())
|
|
return [x.split(" ") for x in my_file]
|
|
|
|
|
|
def load_file_word_matrix(name):
|
|
with open(name, "r") as f:
|
|
return load_word_matrix(f)
|
|
|
|
|
|
#############
|
|
|
|
|
|
def rotate(WHAT, times=1):
|
|
what = WHAT
|
|
for x in range(times):
|
|
what = list(zip(*what[::-1]))
|
|
return what
|
|
|
|
|
|
@contextmanager
|
|
def elapsed_timer():
|
|
start = default_timer()
|
|
elapser = lambda: default_timer() - start
|
|
yield lambda: elapser()
|
|
end = default_timer()
|
|
elapser = lambda: end - start
|
|
|
|
|
|
|
|
|
|
def render_cubes(maxX,maxY,maxZ, my_cubes):
|
|
from mpl_toolkits.mplot3d import Axes3D
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
|
|
|
def cuboid_data(o, size=(1,1,1)):
|
|
X = [[[0, 1, 0], [0, 0, 0], [1, 0, 0], [1, 1, 0]],
|
|
[[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]],
|
|
[[1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1]],
|
|
[[0, 0, 1], [0, 0, 0], [0, 1, 0], [0, 1, 1]],
|
|
[[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]],
|
|
[[0, 1, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]]]
|
|
X = np.array(X).astype(float)
|
|
for i in range(3):
|
|
X[:,:,i] *= size[i]
|
|
X += np.array(o)
|
|
return X
|
|
|
|
def plotCubeAt(positions,sizes=None,colors=None, **kwargs):
|
|
if not isinstance(colors,(list,np.ndarray)): colors=["C0"]*len(positions)
|
|
if not isinstance(sizes,(list,np.ndarray)): sizes=[(1,1,1)]*len(positions)
|
|
g = []
|
|
for p,s,c in zip(positions,sizes,colors):
|
|
g.append( cuboid_data(p, size=s) )
|
|
return Poly3DCollection(np.concatenate(g),
|
|
facecolors=np.repeat(colors,6, axis=0), **kwargs)
|
|
|
|
N1 = maxX
|
|
N2 = maxY
|
|
N3 = maxZ
|
|
ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01])
|
|
x,y,z = np.indices((N1,N2,N3))-.5
|
|
#positions = np.c_[x[ma==1],y[ma==1],z[ma==1]]
|
|
positions = np.c_[my_cubes]
|
|
colors= np.random.rand(len(positions),3)
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(projection='3d')
|
|
ax.set_aspect('equal')
|
|
|
|
pc = plotCubeAt(positions, colors=colors,edgecolor="k")
|
|
ax.add_collection3d(pc)
|
|
|
|
ax.set_xlim([0,maxX])
|
|
ax.set_ylim([0,maxY])
|
|
ax.set_zlim([0,maxZ])
|
|
#plotMatrix(ax, ma)
|
|
#ax.voxels(ma, edgecolor="k")
|
|
|
|
plt.show()
|
|
|
|
|