from contextlib import contextmanager from timeit import default_timer from pathlib import Path import cProfile import functools import pstats def profile(func): @functools.wraps(func) def inner(*args, **kwargs): profiler = cProfile.Profile() profiler.enable() try: retval = func(*args, **kwargs) finally: profiler.disable() with open("profile.out", "w") as profile_file: stats = pstats.Stats(profiler, stream=profile_file) stats.print_stats() return retval return inner spl = lambda y: [int(w) for w in y] def minmax(l): return min(l), max(l) def load_rows(day): return [row for row in load(day)] def load(day): path = Path(get_fname(day)) return path.read_text().rstrip().split("\n") def get_fname(day: int) -> str: import sys if sys.argv[-1] == "--sample": return f"../samples/day{day:02}.txt" else: return f"../full/day{day:02}.txt" ############# def load_char_matrix(f): my_file = [] for line in f: my_file.append(line.rstrip()) return [list(x) for x in my_file] def load_file_char_matrix(name): with open(name, "r") as f: return load_char_matrix(f) def load_int_matrix(f): my_file = [] for line in f: my_file.append(line.rstrip()) return [list(map(int, x)) for x in my_file] def load_file_int_matrix(name): with open(name, "r") as f: return load_int_matrix(f) def load_word_matrix(f): my_file = [] for line in f: my_file.append(line.rstrip()) return [x.split(" ") for x in my_file] def load_file_word_matrix(name): with open(name, "r") as f: return load_word_matrix(f) ############# def rotate(WHAT, times=1): what = WHAT for x in range(times): what = list(zip(*what[::-1])) return what @contextmanager def elapsed_timer(): start = default_timer() elapser = lambda: default_timer() - start yield lambda: elapser() end = default_timer() elapser = lambda: end - start def render_cubes(maxX,maxY,maxZ, my_cubes): from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection def cuboid_data(o, size=(1,1,1)): X = [[[0, 1, 0], [0, 0, 0], [1, 0, 0], [1, 1, 0]], [[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]], [[1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1]], [[0, 0, 1], [0, 0, 0], [0, 1, 0], [0, 1, 1]], [[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]], [[0, 1, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]]] X = np.array(X).astype(float) for i in range(3): X[:,:,i] *= size[i] X += np.array(o) return X def plotCubeAt(positions,sizes=None,colors=None, **kwargs): if not isinstance(colors,(list,np.ndarray)): colors=["C0"]*len(positions) if not isinstance(sizes,(list,np.ndarray)): sizes=[(1,1,1)]*len(positions) g = [] for p,s,c in zip(positions,sizes,colors): g.append( cuboid_data(p, size=s) ) return Poly3DCollection(np.concatenate(g), facecolors=np.repeat(colors,6, axis=0), **kwargs) N1 = maxX N2 = maxY N3 = maxZ ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01]) x,y,z = np.indices((N1,N2,N3))-.5 #positions = np.c_[x[ma==1],y[ma==1],z[ma==1]] positions = np.c_[my_cubes] colors= np.random.rand(len(positions),3) fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.set_aspect('equal') pc = plotCubeAt(positions, colors=colors,edgecolor="k") ax.add_collection3d(pc) ax.set_xlim([0,maxX]) ax.set_ylim([0,maxY]) ax.set_zlim([0,maxZ]) #plotMatrix(ax, ma) #ax.voxels(ma, edgecolor="k") plt.show()