advent-of-code/2024/python/shared.py

174 lines
4.3 KiB
Python
Raw Normal View History

2024-11-26 01:56:32 +00:00
from contextlib import contextmanager
from timeit import default_timer
from pathlib import Path
import cProfile
import functools
import pstats
from itertools import groupby
def all_equal(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
def profile(func):
@functools.wraps(func)
def inner(*args, **kwargs):
profiler = cProfile.Profile()
profiler.enable()
try:
retval = func(*args, **kwargs)
finally:
profiler.disable()
with open("profile.out", "w") as profile_file:
stats = pstats.Stats(profiler, stream=profile_file)
stats.print_stats()
return retval
return inner
def spl(y):
return [int(w) for w in y]
def minmax(l):
return min(l), max(l)
def load_rows(day, part2=False):
return [row for row in load(day, part2)]
def load(day, part2=False):
if part2:
path = Path(get_fname(day) + ".part2")
try:
return path.read_text().rstrip().split("\n")
except FileNotFoundError:
# No part 2 file, use first file
pass
path = Path(get_fname(day))
return path.read_text().rstrip().split("\n")
def get_fname(day: int) -> str:
import sys
if sys.argv[-1] == "--sample":
return f"samples/day{day:02}.txt"
else:
return f"full/day{day:02}.txt"
#############
def load_char_matrix(f):
my_file = []
for line in f:
my_file.append(line.rstrip())
return [list(x) for x in my_file]
def load_file_char_matrix(name):
with open(name, "r") as f:
return load_char_matrix(f)
def load_int_matrix(f):
my_file = []
for line in f:
my_file.append(line.rstrip())
return [list(map(int, x)) for x in my_file]
def load_file_int_matrix(name):
with open(name, "r") as f:
return load_int_matrix(f)
def load_word_matrix(f):
my_file = []
for line in f:
my_file.append(line.rstrip())
return [x.split(" ") for x in my_file]
def load_file_word_matrix(name):
with open(name, "r") as f:
return load_word_matrix(f)
#############
def rotate(WHAT, times=1):
what = WHAT
for x in range(times):
what = list(zip(*what[::-1]))
return what
@contextmanager
def elapsed_timer():
start = default_timer()
elapser = lambda: default_timer() - start
yield lambda: elapser()
end = default_timer()
elapser = lambda: end - start
def render_cubes(maxX, maxY, maxZ, my_cubes):
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
def cuboid_data(o, size=(1, 1, 1)):
X = [
[[0, 1, 0], [0, 0, 0], [1, 0, 0], [1, 1, 0]],
[[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]],
[[1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1]],
[[0, 0, 1], [0, 0, 0], [0, 1, 0], [0, 1, 1]],
[[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]],
[[0, 1, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]],
]
X = np.array(X).astype(float)
for i in range(3):
X[:, :, i] *= size[i]
X += np.array(o)
return X
def plotCubeAt(positions, sizes=None, colors=None, **kwargs):
if not isinstance(colors, (list, np.ndarray)):
colors = ["C0"] * len(positions)
if not isinstance(sizes, (list, np.ndarray)):
sizes = [(1, 1, 1)] * len(positions)
g = []
for p, s, c in zip(positions, sizes, colors):
g.append(cuboid_data(p, size=s))
return Poly3DCollection(
np.concatenate(g), facecolors=np.repeat(colors, 6, axis=0), **kwargs
)
N1 = maxX
N2 = maxY
N3 = maxZ
ma = np.random.choice([0, 1], size=(N1, N2, N3), p=[0.99, 0.01])
x, y, z = np.indices((N1, N2, N3)) - 0.5
# positions = np.c_[x[ma==1],y[ma==1],z[ma==1]]
positions = np.c_[my_cubes]
colors = np.random.rand(len(positions), 3)
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.set_aspect("equal")
pc = plotCubeAt(positions, colors=colors, edgecolor="k")
ax.add_collection3d(pc)
ax.set_xlim([0, maxX])
ax.set_ylim([0, maxY])
ax.set_zlim([0, maxZ])
# plotMatrix(ax, ma)
# ax.voxels(ma, edgecolor="k")
plt.show()